Respuesta :
For the first part of experiment, we have two outcomes,
A = white ball with probability 3/7
We then have 6 white and 2 non-white balls.
P(W)=3/7*6/8=9/28
B= non-white ball with probability 4/7
We then have 5 white and 3 non-white balls
P(W)=4/7*5/8 = 5/14
Total probability of picking a white ball in the second step = 9/28+5/14=19/28
p: 3 white 4 green → white drawn: 3 out of 7 ([tex] \frac{3}{7} [/tex])
→ green drawn: 4 out of 7 ([tex] \frac{4}{7} [/tex])
q: 5 white 2 green → white drawn from p: 6 out of 8 ([tex] \frac{3}{4} [/tex])
→ green drawn from p: 5 out of 8 ([tex] \frac{5}{8} [/tex])
Probability of white from p and white from q:
[tex] \frac{3}{7} [/tex] x [tex] \frac{3}{4} [/tex] = [tex] \frac{9}{28} [/tex]
Probability of green from p and white from q:
[tex] \frac{4}{7} [/tex] x [tex] \frac{5}{8} [/tex] = [tex] \frac{5}{14} [/tex]
white p & white q or green p & white q
[tex] \frac{9}{28} [/tex] or [tex] \frac{5}{14} [/tex]
[tex] \frac{9}{28} [/tex] or [tex] \frac{10}{28} [/tex] = [tex] \frac{19}{28}
Answer: [tex] \frac{19}{28}
