Respuesta :
Use the calculator to graph the function y = [tex] 2x^2+ 25x + 3 [/tex]
In the graph , the coordinates of the vertex is the turning point of the graph.
Given function is the quadratic function. For quadratic function the graph will be U shaped parabola.
There will be only one turning point for parabola
Turning point is the vertex
To find vertex we use formula x= [tex] \frac{-b}{2a} [/tex]
y = [tex] 2x^2+ 25x + 3 [/tex]
a=2, b= 35
[tex] x =\frac{-25}{2*2} =\frac{-25}{4} [/tex] = -6.25
Now plug in [tex] \frac{-25}{4} [/tex] in f(x)
[tex] y= 2(\frac{-25}{4})^2+ 25(\frac{-25}{4}) + 3 [/tex]
Take common denominator
[tex] y= \frac{625}{8}+ (\frac{-625}{4}) + 3 =\frac{625-1250+24}{8} =-\frac{601}{8} [/tex] = -75.125
So coordinates of turning point is (-6.25, -75.13)
The graph is attached below.

Answer:
(6.25, -75.13)
Step-by-step explanation:
I did it on Edgenuity