Given expression is sin(45)sin(15)
this expression best matches with left side of the formula:
2 sin(A) sin(B)= cos(A-B) - cos(A+B)
so we can plug given angles 45 and 15 there
2 sin(45) sin(15)= cos(45-15) - cos(45+15)
2 sin(45) sin(15)= cos(30) - cos(60)
sin(45) sin(15)= [cos(30) - cos(60)]/2
We are getting negative sign and cos in the solution while none of the given choices have same situation so answer will be none of them.
-----------
For cos(75)-cos(15), we will use formula:
[tex] \cos\left(A\right)-\cos\left(B\right)=-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) [/tex]
Now plug the given angles
[tex] \cos\left(75\right)-\cos\left(15\right)=-2\sin\left(\frac{75+15}{2}\right)\sin\left(\frac{75-15}{2}\right) [/tex]
[tex] \cos\left(75\right)-\cos\left(15\right)=-2\sin\left(\frac{90}{2}\right)\sin\left(\frac{60}{2}\right) [/tex]
[tex] \cos\left(75\right)-\cos\left(15\right)=-2\sin\left(45\right)\sin\left30\right) [/tex]
Hence choice B is correct.