[tex] \displaystyle \frac{\sqrt{x \cdot \sqrt[3]{x^2}} \cdot \sqrt[3]{x^2}}{(\sqrt x)^3}= \frac{x^{\frac{1}{2}} \cdot (x^{\frac{2}{3}})^{\frac{1}{2}} \cdot x^{\frac{2}{3}}}{(x^{\frac{1}{2}})^3}=\frac{x^{\frac{1}{2}} \cdot x^{\frac{2}{6}} \cdot x^{\frac{2}{3}}}{x^{\frac{3}{2}}}=\\ \\ =x^{\frac{1}{2}+ \frac{1}{3}+ \frac{2}{3}- \frac{3}{2}}=x^{\frac{3}{3}-\frac{2}{2}}=x^{1-1}=x^0=1 [/tex]
Answer is 1.