What are the amplitude, period, phase shift, and midline of f(x) = −4 cos(3x − π) + 1? amplitude: −4; period: pi over 3; phase shift: x = pi over 4; midline: y = −1 amplitude: 4; period: pi over 3; phase shift: x = pi over 4; midline: y = 1 amplitude: −4; period: 2 pi over 3; phase shift: x = pi over 3; midline: y = −1 amplitude: 4; period: 2 pi over 3; phase shift: x = pi over 3; midline: y = 1?

Respuesta :

Alright, lets get started.

The standard form for cos function is

[tex] f(x) = A cos (Bx + C ) + D [/tex]

Where

A = Amplitude (positive value)

Period = [tex] \frac{2\pi}{B} [/tex]

Phase shift = [tex] \frac{-C}{B} [/tex]

Mid line or vertical shift = D

So, comparing the given function with standard

[tex] f(x) = - 4 cos (3x- \pi ) + 1 [/tex]

A = 4

B = 3

C= [tex] - \pi [/tex]

D = 1

Means Amplitude = 4

Period = [tex] \frac{2\pi}{B} = \frac{2\pi}{3} [/tex]

Phase shift = [tex] - \frac{C}{B} = \frac{\pi}{3} [/tex]

Mid line = 1

Hence the answer is last choice 4.

Hope it will help :)