Respuesta :

Think kind of problems can be solved by turning roots into rational exponents. If you remember that

[tex] \sqrt[n]{a^m} = a^{\frac{m}{n}} [/tex], you have

[tex] \sqrt{5} = 5^{\frac{1}{2}}, \sqrt[3]{5} = 5^{\frac{1}{3}}[/tex]

Moreover, recall the following rule for multiplying powers of the same base:

[tex] a^b \cdot a^c = a^{b+c} [/tex]

to write

[tex] \sqrt{5}\cdot \sqrt[3]{5} = 5^{\frac{1}{2}} \cdot 5^{\frac{1}{3}} = 5^{\frac{1}{2}+\frac{1}{3}} [/tex]

since [tex] \cfrac{1}{2}+\cfrac{1}{3} = \cfrac{5}{6} [/tex], the result is

[tex]5^{\frac{5}{6}} = \sqrt[6]{5^5} [/tex]