A box with a square base and no top is to be built with a volume of 4000 in3. find the dimensions of the box that requires the least amount of material. how much material is required at the minimum?

Respuesta :

Riia

Let the length of the square base be x inches .

And the height of the box be y inch .

Volume = x*x*y

4000 = x *x *y

[tex] y = \frac{4000}{x^2} [/tex]

S = x*x + 2xy + 2 x y

[tex] S = x^2 + 4 xy [/tex]

[tex] S = x^2+ 4x* \frac{4000}{x^2} [/tex]

[tex] S = x^2 + \frac{16000}{x} [/tex]

[tex] S ' = 2x - \frac{16000}{x^2} [/tex]

S ' =0

[tex] 2x - \frac{16000}{x^2}=0 [/tex]

[tex] 2x^3 - 16000 = 0 [/tex]

[tex] x^3 = 8000
[/tex]

x = 20

[tex] y = \frac{4000}{20^2} = \frac{4000}{400} = 10 [/tex]