Respuesta :

In this question, i think we have to determine all the three angles of a triangle.

Since the three angles of a triangle are p,q and r.

Since, angle measure of q is one third of p, which implies

[tex] q=\frac{p}{3} [/tex]

Angle measure of r is the difference of p and q, which implies

[tex] r=p-q [/tex] (Equation 1)

By using the angle sum property of a triangle which states that the sum of all the angles of a triangle is [tex] 180^{\circ} [/tex]

p+q+r=[tex] 180^{\circ} [/tex]

Substituting the value of r from Equation 1,

p+q+p-q=[tex] 180^{\circ} [/tex]

2p=[tex] 180^{\circ} [/tex]

p=[tex] 90^{\circ} [/tex]

Since [tex] q=\frac{p}{3} [/tex]

[tex] q=\frac{90}{3} = 30^{\circ} [/tex]

Since, r=p-q

r =[tex] 90^{\circ}-30^{\circ}=60^{\circ} [/tex]

The angle measure of three angle of a triangle are p, q and r.

As, sum of angles of triangle is 180 degrees.

So, p+q+r=180

Angle measure of q is one third of p

q=[tex] \frac{1}{3} [/tex]p

r is the difference of p and q

r=p-q

As, q=[tex] \frac{p}{3} [/tex]

So, r=p-q=p-[tex] \frac{p}{3} [/tex]

r=[tex] \frac{3p}{3}-\frac{1p}{3} [/tex]

r=[tex] \frac{3p-1p}{3} [/tex]

r=[tex] \frac{2p}{3} [/tex]

As, p+q+r=180 and q=[tex] \frac{p}{3} [/tex] and r=[tex] \frac{2p}{3} [/tex]

So, we get

p+[tex] \frac{p}{3} [/tex]+[tex] \frac{2p}{3} [/tex]=180

To get rid of fraction, let us multiply the complete equation by 3

3*p+ 3* [tex] \frac{p}{3} [/tex]+ 3*[tex] \frac{2p}{3} [/tex]=3*180

3p+p+2p=540

6p=540

To solve for p, let us divide by 6 on both sides

[tex] \frac{6p}{6} =\frac{540}{6} [/tex]

p=90

As, p=90

So, q=[tex] \frac{p}{3} [/tex]

q=[tex] \frac{90}{3} [/tex]

q=30

And, r=[tex] \frac{2p}{3} [/tex]

r=[tex] \frac{2*90}{3} [/tex]

r=[tex] \frac{180}{3} [/tex]

r=60

So, p=90, q=30, r=60

The three angles of triangle are 90,30 and 60