If the area of a trapezoid is 104 cm squared , a = 4x -1 cm, b = x+2 cm , and h = 8 cm , calculate the length of the longer base

Respuesta :

we are given trapezoid

Area is 104cm^2

a=4x-1 cm

b=x+2 cm

h=8cm

we can use area formula

[tex] Area=\frac{1}{2} (a+b)*h [/tex]

we can plug above values

[tex] 104=\frac{1}{2} (4x-1+x+2)*8 [/tex]

now, we can solve for x

[tex] 104=\frac{1}{2} (5x+1)*8 [/tex]

[tex] 13=\frac{1}{2} (5x+1) [/tex]

[tex] 26= (5x+1) [/tex]

[tex] 5x=25 [/tex]

so, we get

[tex] x=5 [/tex]

length of longer base is a

we can plug x=5 into a

[tex] a=4*5-1 [/tex]

[tex] a=19cm [/tex]...............Answer

gmany

The formula of an area of a trapezoid:

[tex]A=\dfrac{a+b}{2}\cdot h[/tex]

We have:

[tex]a=4x-1;\ b=x+2;\ h=8;\ A=104cm^2[/tex]

Substitute:

[tex]\dfrac{4x-1+x+2}{2}\cdot8=104\\\\\dfrac{5x+1}{1}\cdot4=104\ \ \ |:4\\\\5x+1=26\ \ \ |-1\\\\5x=25\ \ \ |:5\\\\x=5[/tex]

The longer base is a = 4x - 1.

Substitute the value of x to the equation:

[tex]a=4(5)-1=20-1=19[/tex]

Answer: 19 cm.