Answer: 4,8,16,32,64,128
Step-by-step explanation:-
Given: The first term of sequence=[tex]a_1=4[/tex]
The given explicit rule for nth term is
[tex]a_n=2\cdot a_{n-1}[/tex]
Now, the second term =[tex]a_2=2\cdot a_{2-1}=2\cdot a_{1}=2(4)=8[/tex]
The third term =[tex]a_3=2\cdot a_{3-1}=2\cdot a_{2}=2(8)=16[/tex]
The fourth term =[tex]a_4=2\cdot a_{4-1}=2\cdot a_{3}=2(16)=32[/tex]
The fifth term =[tex]a_5=2\cdot a_{5-1}=2\cdot a_{4}=2(32)=64[/tex]
The sixth term =[tex]a_6=2\cdot a_{6-1}=2\cdot a_{5}=2(64)=128[/tex]
Hence, the first six terms of the sequence are 4,8,16,32,64,128