What is the quotient of -8a^8b^-2/10a^-4b^-10 in simplified form? Assume a=0 b=0 A.) -4a^12b^8/5 B.)-4a^32b^5/5 C.)a^12b^8/80 D.)a^32b^5/80

Respuesta :

-8a^8b^-2/10a^-4b^-10

= (-8/10) a^(8+4)b^(-2+10)

= -4/5 a^12 b^8

=-4 a^12 b^8 / 5

Answer is A.) -4 a^12 b^8 / 5

Answer:

[tex]\frac{-4a^{12}b^8}{5}[/tex]

Step-by-step explanation:

Write -8a^8b^-2/10a^-4b^-10 in simplified form

[tex]\frac{-8a^8b^{-2}}{10a^{-4}b^{-10}}[/tex]

To simplify this we apply property of exponents

[tex]\frac{a^m}{a^n} = a^{m-n}[/tex]

[tex]\frac{-8}{10} =-\frac{4}{5}[/tex]

[tex]\frac{a^8}{a^{-4}} = a^{8-(-4)}=a^{12}[/tex]

[tex]\frac{b^{-2}}{b^{-10}} = b^{-2-(-10)}=b^{8}[/tex]

So simplified expression is

[tex]\frac{-4a^{12}b^8}{5}[/tex]