Respuesta :
In △BCD, d = 3, b = 5, and m∠D = 25°.
According to Sin law,
[tex] \frac{Sin A}{a} =\frac{Sin B}{b} =\frac{Sin C}{c} [/tex]
So, When we apply the Sin law to be △BCD
[tex] \frac{Sin B}{b} =\frac{Sin D}{d} [/tex]
Let us plug in the value of d = 3, b = 5, and m∠D = 25°
[tex] \frac{Sin B}{5}=\frac{Sin 25 degree}{3} [/tex]
Sin 25 degree according to the calculator is 0.44261
So, Sin 25 degree=0.443
So, we get
\frac{Sin B}{5}=\frac{0.443}{3}
So, To solve for B, let us try to get rid of 5
So, Let us multiply by 5 on both sides.
[tex] 5*\frac{Sin B}{5}=5*\frac{0.443}{3} [/tex]
[tex] \frac{1Sin B}{1} =\frac{5*0.443}{3} [/tex]
[tex] \frac{1Sin B}{1} =\frac{2.113}{3} [/tex]
Sin B=0.7043
To solve for B, Let us take inverse of Sin on both
[tex] Sin^{-1} (Sin B)=Sin^{-1}(0.70433) [/tex]
B=Sin^{-1}(0.70433)
B=45 degrees or B= 180 degrees -45 degrees
B=45 degrees or B=135 degrees
As, the Sin B is positive the B lies in first quadrant or second quadrant. As, sin is positive in quadrant 1 or quadrant 2 only. So, to find the angle, B in quadrant 2. we subtract the angle 45 degree from 180 degree.
So, Option D 45° and 135° Answer