Respuesta :
cos(3x) = cos(2x+x)
= cos(2x) cos (x) -sin(2x)sin(x)
[tex] =(1-2sin^2(x)) cos(x)-(2 sin(x) cos(x)) sin(x) [/tex]
[tex] = cos x -2sin^2(x) cos(x) -2sin^2(x) cos(x) [/tex]
[tex] = cos(x) - 4 sin^2(x) cos(x) [/tex]
[tex] cos(x)(1-4sin^2(x)) [/tex]
[tex] =cos(x(1-4(1-cos^2(x)) [/tex]
[tex] =cos(x)(1-4+4cos^2(x)) [/tex]
[tex] = cos(x)-4cos(x)+4cos^3(x) [/tex]
[tex] =-3cos(x)+4cos^3(x) [/tex]
Answer:
1. cos(2x+x)
2. cos2xcos-sin2xsinx
3. 1-2sin^2x(cosx) -(2sinxcosx)sinx
4. cosx - 2sin^2xcosx - 2sin^2xcosx
5. cosx - 4sin^2xcosx
6. cosx( 1 - 4sin^2x)
7. cosx{1-4(1-cos^2x)}
8. cosx{-3+4cos^2x)
9. 4cos^3x-3cosx
Step-by-step explanation: I got this right on Edmentum