Respuesta :
Denote by [tex]R,K[/tex] the random variables representing the integer values [tex]r,k[/tex], respectively. Then [tex]R\sim\mathrm{Unif}(-2,5)[/tex] and [tex]K\sim\mathrm{Unif}(2,7)[/tex], where [tex]\mathrm{Unif}(a,b)[/tex] denotes the discrete uniform distribution over the interval [tex][a,b][/tex]. So [tex]R[/tex] and [tex]K[/tex] have probability mass functions
[tex]p_R(r)=\begin{cases}\dfrac18&\text{for }r\in\{-2,-1,\ldots,5\}\\\\0&\text{otherwise}\end{cases}[/tex]
[tex]p_K(k)=\begin{cases}\dfrac16&\text{for }k\in\{2,3,\ldots7\}\\\\0&\text{otherwise}\end{cases}[/tex]
We want to find [tex]P\left(\dfrac RK\equiv0\pmod n\right)[/tex], where [tex]n[/tex] is any integer.
We have six possible choices for [tex]K[/tex]:
(i) if [tex]K=2[/tex], then [tex]\dfrac RK[/tex] is an integer when [tex]R=\pm2,0,4[/tex];
(ii) if [tex]K=3[/tex], then [tex]\dfrac RK[/tex] is an integer when [tex]R=0,3[/tex];
(iii) if [tex]K=4[/tex], then [tex]\dfrac RK[/tex] is an integer when [tex]R=0,4[/tex];
(iv) if [tex]K=5[/tex], then [tex]\dfrac RK[/tex] is an integer when [tex]R=0,5[/tex];
(v) if [tex]K=6[/tex] or [tex]K=7[/tex], then [tex]\dfrac RK[/tex] is an integer only when [tex]R=0[/tex] in both cases.
If the selection of [tex]R,K[/tex] are made independently, then the joint distribution is the product of the marginal distribution, i.e.
[tex]p_{R,K}(r,k)=p_R(r)\cdot p_K(k)=\begin{cases}\dfrac1{48}&\text{for }(r,k)\in[-2,5]\times[2,7]\\\\0&\text{otherwise}\end{cases}[/tex]
That is, there are 48 possible events in the sample space. We counted 12 possible outcomes in which [tex]\dfrac RK[/tex] is an integer, so the probability of this happening is [tex]\dfrac{12}{48}=\dfrac14[/tex].