Solution:
Given: F(x, y, z) = 7y²z³ i + 14xyz³ j + 21xy²z² k
F is a conservative field if curl F = 0, there exist a scalar potential function such that F = [tex]\triangledown f[/tex].
curl f = [tex]= \left | \begin{matrix} i & j & k\\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z}\\ 7y^{2}z^{3} & 14xyz^{3} & 21xy^{2}z^{2} \end{matrix} \right |[/tex]
[tex]= i\left [ \frac{\partial }{\partial y}\left ( 21xy^{2}z^{2} \right ) - \frac{\partial }{\partial z}\left ( 14xyz^{3} \right ) \right ] - j \left [ \frac{\partial }{\partial x}\left ( 21xy^{2}z^{2} \right ) - \frac{\partial }{\partial z}\left ( 7y^{2}z^{3} \right ) \right ] + k\left [ \frac{\partial }{\partial x}\left ( 14xyz^{3} \right ) - \frac{\partial }{\partial y}\left ( 7y^{2}z^{3} \right ) \right ][/tex]
[tex]= i \left ( 0 \right ) - j\left ( 0 \right ) + k\left ( 0 \right )[/tex]
[tex]= 0[/tex]
Thus,curl F is conservative.
To find f such that F = gradf.
[tex]7y²z³ i + 14xyz³ j + 21xy²z² k = i\left ( \frac{\mathrm{d}f }{\mathrm{d} x} \right ) + j \left ( \frac{\mathrm{d}f }{\mathrm{d} y} \right ) + k \left ( \frac{\mathrm{d}f }{\mathrm{d} z} \right )[/tex]
[tex]\frac{\mathrm{d}f }{\mathrm{d} x} = 7y²z³ [/tex]
[tex]\frac{\mathrm{d}f }{\mathrm{d} x} = 14xyz³[/tex]
[tex]\frac{\mathrm{d}f }{\mathrm{d} x} = 21xy²z²[/tex]
Integrate the above terms with respect to x.
[tex]f = 7xy²z³ + c_{1}[/tex]
[tex]f = 7xy²z³ + c_{2}[/tex]
[tex]f = 7xy²z³ + c_{3}[/tex]
Hence, the scalar potential function is [tex]f = 7xy²z³ + c[/tex].