How can 1/4x-3=1/2x+8 be set up as a system of equations??

A) 4y+4x=-12
2y+2x=16

B) 4y-x=-12
2y-x=16

C) 4y+x=-12
2y+x=16

D) 4y-4x=-12
2y-2x=16

Respuesta :

we are given

[tex] \frac{1}{4} x-3=\frac{1}{2} x+8 [/tex]

Let's assume it is equal to y

[tex] \frac{1}{4} x-3=\frac{1}{2} x+8=y [/tex]

so, we can write

[tex] y=\frac{1}{4} x-3 [/tex]

we can multiply both sides by 4

[tex] 4y=4*\frac{1}{4} x-4*3 [/tex]

[tex] 4y=x-12 [/tex]

[tex] 4y-x=-12 [/tex]

so, we got

first equation is

[tex] 4y-x=-12 [/tex]

now, we can find second equation

[tex] y=\frac{1}{2} x+8 [/tex]

we can multiply both sides by 2

[tex] 2y=2*\frac{1}{2} x+2*8 [/tex]

[tex] 2y= x+16 [/tex]

[tex] 2y-x=16 [/tex]

so, we got

system of equations as

[tex] 2y-x=16 [/tex]

[tex] 4y-x=-12 [/tex

so, option-B..............Answer

B, is the final answer!!! :)