Respuesta :
Hello!
We have the following data:
v (speed of light) = [tex] 2.998*10^8\:m/s [/tex]
λ (wavelength) = [tex] 4.64*10^{-7}\:m [/tex]
First, let's find the frequency of the wave, let's see:
[tex] f = \dfrac{v}{\lambda} [/tex]
[tex] f = \dfrac{2.998*10^8\:\diagup\!\!\!\!\!m/s}{4.64*10^{-7}\:\diagup\!\!\!\!\!m} [/tex]
[tex] f \approx 0.6461*10^{8-(-7)} [/tex]
[tex] f \approx 0.6461*10^{8+7} [/tex]
[tex] f \approx 0.6461*10^{15} [/tex]
[tex] \boxed{f \approx 6.461*10^{14}\:Hz} [/tex]
Now, find the Energy of the Photon by Planck's Equation, given:
E (photon energy) =? (in Joule)
h (Planck's constant) = [tex] 6.626*10^{-34}\:J * s [/tex]
f (radiation frequency) = [tex] 6.461*10^{14}\:Hz [/tex]
Therefore, we have:
[tex] E = h*f [/tex]
[tex] E = 6.626*10^{-34}*6.461*10^{14} [/tex]
[tex] E \approx 42.81*10^{-34+14} [/tex]
[tex] E \approx 42.81*10^{-20} [/tex]
[tex] \boxed{\boxed{E \approx 4.281*10^{-19}\:Joule}}\end{array}}\qquad\checkmark [/tex]
I Hope this helps, greetings ... DexteR! =)
Answer : The change in energy of an atom is, [tex]4.28\times 10^{-19}J[/tex]
Solution : Given,
Wavelength of the photon = [tex]4.64\times 10^{-7}m[/tex]
Formula used :
[tex]E=h\times \frac{c}{\lambda}[/tex]
where,
E = energy of an atom
h = Planck’s constant = [tex]6.626\times 10^{-34}Js[/tex]
c = speed of light = [tex]2.998\times 10^{8}m/s[/tex]
[tex]\lambda[/tex] = wavelength of photon
Now put all the given values in the above formula, we get the energy of an atom.
[tex]E=(6.626\times 10^{-34}Js)\times \frac{2.998\times 10^8m/s}{4.64\times 10^{-7}m}[/tex]
[tex]E=4.28\times 10^{-19}J[/tex]
Therefore, the change in energy of an atom is, [tex]4.28\times 10^{-19}J[/tex]