Respuesta :
check the picture below.
so we use the blue triangle to get the slanted length of the isosceles triangle, that means the upper-tangents are each 13 - 5, as you see there, then we use the yellow triangle with those lengths, and the pythagorean theorem to get r.
[tex] \bf \stackrel{\textit{volume of a sphere}}{V=\cfrac{4\pi r^3}{3}}\implies V=\cfrac{4\pi \left( \frac{10}{3} \right)^3}{3}\implies V=\cfrac{4\pi \cdot \frac{10^3}{3^3}}{3}
\\\\\\
V=\cfrac{\frac{4000\pi }{27}}{3}\implies V=\cfrac{4000\pi }{81}\implies V=49\frac{31}{81}\pi [/tex]
Look at the picture.
Use the Pythagorean theorem to calculate the length of a side x:
[tex]x^2=5^2+12^2\\\\x^2=25+144\\\\x^2=169\to x=\sqrt{169}\to x=13\ cm[/tex]
Use the formula of a radius of a circle inscribed in a triangle:
[tex]r=\dfrac{2A_\Delta}{a+b+c}[/tex]
[tex]A_\Delta[/tex] - an area of a triangle
[tex]a,\ b,\ c[/tex] - the sides of the triangle
Calculate:
[tex]A_\Delta=\dfrac{10\cdot12}{2}=60\ cm^2[/tex]
[tex]r=\dfrac{2\cdot60}{13+13+10}=\dfrac{120}{36}=\dfrac{10}{3}\ cm[/tex]
The fromula of the volume of a sphere:
[tex]V=\dfrac{4}{3}\pi r^3[/tex]
Substitute:
[tex]V=\dfrac{4}{3}\pi\cdot\left(\dfrac{10}{3}\right)^3=\dfrac{4}{3}\pi\cdot\dfrac{1,000}{27}=\dfrac{4,000\pi}{81}\ cm^3\approx49\pi\ cm^3[/tex]