Respuesta :

[tex] \bf \cfrac{tan(-x)csc(-x)}{sec(-x)cot(-x)}\implies \cfrac{\quad \frac{sin(-x)}{cos(-x)}\cdot \frac{1}{sin(-x)}\quad }{\frac{1}{cos(-x)}\cdot \frac{cos(-x)}{sin(-x)}}\implies \cfrac{\quad \frac{1}{cos(-x)}\quad }{\frac{1}{sin(-x)}}
\\\\\\
\cfrac{1}{cos(-x)}\cdot \cfrac{sin(-x)}{1}\implies \cfrac{sin(-x)}{cos(-x)}\implies \cfrac{\stackrel{\stackrel{symmetry}{identities}}{-sin(x)}}{cos(x)}\implies -tan(x) [/tex]

Answer:

For plato users is tan(-x)

Step-by-step explanation:

The previous answer is correct but you have to follow the formula they are giving you

So intead of -tan(x) you write tan(-x) just like in the formula