Respuesta :
We apply the mid point formula
That is for two points [tex] (x_{1} ,y_{1}) and (x_{2},y_{2}) [/tex]
The mid point is given by
[tex] (\frac{(x_{1} + x_{2})}{2} , \frac{(y_{1} + y_{2})}{2} ) [/tex]
So we plug the values
[tex] (\frac{(2m + 2p)}{2} , \frac{(2n+2r)}{2} ) [/tex]
So we can simplify it now factor 2 on both
We get
[tex] (\frac{(2(m+p))}{2} , \frac{(2(n+r))}{2} ) [/tex]
we can cancel out the 2 in numerator and denominator
So
[tex] (m+p) , (n+r) [/tex]
Final answer is Option D
(m+p),(n+r)
A (2m , 2n) and C(2p , 2r)
Midpoint
x = (x1+x2)/2 and y = (y1+y2)/2
So midpoint of AC:
x = (2m+2p)/2
= 2(m+p)/2
= m + p
y = (2n+2r)/2
= 2(n + r)/2
= n + r
Answer is the last option
(m + p , n +r)