Respuesta :

We apply the mid point formula

That is for two points [tex] (x_{1} ,y_{1}) and (x_{2},y_{2}) [/tex]

The mid point is given by

[tex] (\frac{(x_{1} + x_{2})}{2} , \frac{(y_{1} + y_{2})}{2} ) [/tex]

So we plug the values

[tex] (\frac{(2m + 2p)}{2} , \frac{(2n+2r)}{2} ) [/tex]

So we can simplify it now factor 2 on both

We get

[tex] (\frac{(2(m+p))}{2} , \frac{(2(n+r))}{2} ) [/tex]

we can cancel out the 2 in numerator and denominator

So

[tex] (m+p) , (n+r) [/tex]

Final answer is Option D

(m+p),(n+r)

A (2m , 2n) and C(2p , 2r)

Midpoint

x = (x1+x2)/2 and y = (y1+y2)/2

So midpoint of AC:

x = (2m+2p)/2

= 2(m+p)/2

= m + p

y = (2n+2r)/2

= 2(n + r)/2

= n + r

Answer is the last option

(m + p , n +r)