Respuesta :

[tex]x^2+bx+c[/tex] will have real roots when the discriminant of the quadratic, [tex]\Delta=b^2-4c[/tex], is non-negative, i.e.

[tex]b^2-4c\ge0\implies b^2\ge4c[/tex]

Your question about probability is currently impossible to answer without knowing exactly what the experiment is. Are you picking [tex]b,c[/tex] at random from some interval? Is the choice of either distributed a certain way?

I'll assume the inclusion of "[0,1]" in your question is a suggestion that both [tex]b,c[/tex] are chosen indepently of one another from [0, 1]. Let [tex]B,C[/tex] denote the random variables that take on the values of [tex]b,c[/tex], respectively. I'll assume [tex]B,C[/tex] are identical and follow the standard uniform distribution, i.e. they each have the same PDF and CDF as below:

[tex]f_X(x)=\begin{cases}1&\text{for }0<x<1\\0&\text{otherwise}\end{cases}[/tex]

[tex]F_X(x)=\begin{cases}0&\text{for }x<0\\x&\text{for }0\le x<1\\1&\text{for }x\ge1\end{cases}[/tex]

where [tex]X[/tex] is either of [tex]B,C[/tex].

Then the question is to find [tex]P(B^2\ge4C)[/tex]. We have

[tex]P(B^2\ge4C)=P\left(C\le\dfrac{B^2}4\right)[/tex]

and we can condition the random variable [tex]C[/tex] on the event of [tex]B=b[/tex] by supposing

[tex]P\left(C\le\dfrac{B^2}4\right)=P\left(\left(C\le\dfrac{B^2}4\right)\land(B=b)\right)=P\left(C\le\dfrac{B^2}4\mid B=b\right)\cdot P(B=b)[/tex]

then integrate over all possible values of [tex]b[/tex].

[tex]=\displaystyle\int_{-\infty}^\infty P\left(C\le\dfrac{b^2}4\right)f_B(b)\,\mathrm db[/tex]

[tex]=\displaystyle\int_{-\infty}^\infty F_C\left(\dfrac{b^2}4\right)f_B(b)\,\mathrm db[/tex]

[tex]=\displaystyle\int_0^1\dfrac{b^2}4\,\mathrm db=\frac1{12}[/tex]