The resistance of the cylindrical wire is [tex] R=\frac{\rho l}{A} [/tex].
Here [tex] R [/tex] is the resistance, [tex] l [/tex] is the length of the wire and [tex] A [/tex] is the area of cross section. Since the wire is cylindrical [tex] A=\frac{\pi d^2}{4} [/tex] . Rearranging the above equation,
[tex] A=\frac{\rho l}{R}\\ \frac{\pi d^2}{4}=\frac{\rho l}{R}\\ l=\frac{\pi d^2 R}{4 \rho} [/tex]
Here [tex] d=0.15, R=15, \rho=1.68(10^{-8}) [/tex].
Substituting numerical values,
[tex] l=\frac{\pi 0.15^2(10^{-6}) (15)}{4 (1.68)(10^{-8})} \\
l=15.78 [/tex]
The length of the wire is [tex] 15.78 \;\;m [/tex]