What is the rate of increase for the function f(x)=1/3(3sqr24)^2x
A.1/3
B.2 3sqr3
C.4
D. 4 3sqr9

Answer:
The correct option is D.
Step-by-step explanation:
The general form of exponential function is
[tex]f(x)=ab^x[/tex] ... (1)
Where a is initial value and b is rate of increase.
The given function is
[tex]f(x)=\frac{1}{3}(\sqrt[3]{24})^{2x}[/tex]
[tex]f(x)=\frac{1}{3}(\sqrt[3]{2^3\cdot 3})^{2x}[/tex]
[tex]f(x)=\frac{1}{3}(2\sqrt[3]{3})^{2x}[/tex]
[tex]f(x)=\frac{1}{3}((2\sqrt[3]{3})^2)^{x}[/tex]
[tex]f(x)=\frac{1}{3}(4\sqrt[3]{3^2})^{x}[/tex]
[tex]f(x)=\frac{1}{3}(4\sqrt[3]{9})^{x}[/tex] .... (2)
From (1) and (2), we get
[tex]b=4\sqrt[3]{9}[/tex]
Therefore the correct option is D.