Respuesta :

So we are given the expression:

[tex] \frac{mn^{2}}{4} [/tex] ÷ [tex] \frac{m^{2}n}{8} [/tex]

When we divide fractions, we must flip the second term and change the sign to multiplication:

[tex] \frac{mn^{2}}{4} *\frac{8}{m^{2}n} [/tex]

And then we multiply across:

[tex] \frac{mn^{2}}{4} *\frac{8}{m^{2}n}= \frac{8mn^{2}}{4m^{2}n} [/tex]

Then we can break apart all of the like variables for simplification:

[tex] \frac{8mn^{2}}{4m^{2}n}=\frac{8}{4} * \frac{m}{m^{2}} *\frac{n^{2}}{n} [/tex]

When we simplify variables through division, we subtract the exponent of the numerator from the exponent of the denominator. So we then have:

[tex] \frac{8}{4} =2 [/tex]

[tex] \frac{m}{m^{2}}=m^{-1} =\frac{1}{m} [/tex]

[tex] \frac{n^{2}}{n}=n^{1}=\frac{n}{1} [/tex]

So then we multiply all of these simplified parts together:

[tex] \frac{2}{1}*\frac{1}{m}*\frac{n}{1} =\frac{2n}{m} [/tex]

So now we know that the simplified form of the initial expression is: [tex] \frac{2n}{m} [/tex].

RELAXING NOICE
Relax