[tex]x=5s+t[/tex]
[tex]y=s-t[/tex]
The Jacobian matrix for this transformation is
[tex]\mathbf J=\dfrac{\partial(x,y)}{\partial(s,t)}=\begin{bmatrix}\dfrac{\partial x}{\partial s}&\dfrac{\partial x}{\partial t}\\\\\dfrac{\partial y}{\partial s}&\dfrac{\partial y}{\partial t}\end{bmatrix}=\begin{bmatrix}5&1\\1&-1\end{bmatrix}\implies\det\mathbf J=-6[/tex]
The vertices in the [tex]x,y[/tex] plane correspond to the following points in the [tex]s,t[/tex] plane:
[tex](x,y)=(0,0)\implies\begin{cases}5s+t=0\\s-t=0\end{cases}\implies(s,t)=(0,0)[/tex]
[tex](x,y)=(5,1)\implies\begin{cases}5s+t=5\\s-t=1\end{cases}\implies(s,t)=(1,0)[/tex]
[tex](x,y)=(6,0)\implies\begin{cases}5s+t=6\\s-t=0\end{cases}\implies(s,t)=(1,1)[/tex]
[tex](x,y)=(1,-1)\implies\begin{cases}5s+t=1\\s-t=-1\end{cases}\implies(s,t)=(0,1)[/tex]
That is, the parallelogram [tex]\mathcal R[/tex] is mapped to a square [tex]\mathcal R^*[/tex] in the [tex]s,t[/tex] plane, so
[tex]\displaystyle\iint_{\mathcal R}x+y\,\mathrm dA=\iint_{\mathcal R^*}((5s+t)+(s-t))|\det\mathbf J|\,\mathrm ds,\,\mathrm dt[/tex]
[tex]=\displaystyle6\int_{t=0}^{t=1}\int_{s=0}^{s=1}6s\,\mathrm ds\,\mathrm dt=18[/tex]