Respuesta :

Trigonometry would help with this question.

The area of a regular hexagon is ((3√3)s^2)/2 where s is the side.

Plugging in 2 gives us 6√3 or 10.39 feet.

gmany

Look at the picture.

The longer diagonals of the hexagon divide it into 6 equilateral triangles.

Method 1.

Use the Pythagorean theorem to calculate the height of triangle:

[tex]a=2;\ \dfrac{a}{2}=\dfrac{2}{2}=1;\ h=?\\\\h^2+\left(\dfrac{a}{2}\right)^2=a^2\\\\h^2+1^2=2^2\\h^2+1=4\ \ \ |-1\\h^2=3\to h=\sqrt3[/tex]

Calculate the area of the triangle:

[tex]A_\triangle=\dfrac{1}{2}\cdot2\cdot\sqrt3=\sqrt3\ ft^2[/tex]

Calculate the area of the hexagon:

[tex]A=6A_\triangle\to A=6\cdot\sqrt3=6\sqrt3\ ft^2[/tex]

Method 2:

Use the formula of the area of an equilateral triangle:

[tex]A_\triangle=\dfrac{a^2\sqrt3}{4}\to A_\triangle=\dfrac{2^2\sqrt3}{4}=\sqrt3\ ft^2[/tex]

Calculate the area of the hexagon:

[tex]A=6A_\triangle\to A=6\cdot\sqrt3=6\sqrt3\ ft^2[/tex]

Method 3.

Use the trigonometric function to calculate the height of a triangle:

[tex]\sin60^o=\dfrac{h}{a}\\\\\sin60^o=\dfrac{\sqrt3}{2}\\\\\dfrac{h}{2}=\dfrac{\sqrt3}{2}\ \ \ |\cdot2\\\\h=\sqrt3\\\\\vdots[/tex]

Ver imagen gmany
RELAXING NOICE
Relax