Respuesta :
Trigonometry would help with this question.
The area of a regular hexagon is ((3√3)s^2)/2 where s is the side.
Plugging in 2 gives us 6√3 or 10.39 feet.
Look at the picture.
The longer diagonals of the hexagon divide it into 6 equilateral triangles.
Method 1.
Use the Pythagorean theorem to calculate the height of triangle:
[tex]a=2;\ \dfrac{a}{2}=\dfrac{2}{2}=1;\ h=?\\\\h^2+\left(\dfrac{a}{2}\right)^2=a^2\\\\h^2+1^2=2^2\\h^2+1=4\ \ \ |-1\\h^2=3\to h=\sqrt3[/tex]
Calculate the area of the triangle:
[tex]A_\triangle=\dfrac{1}{2}\cdot2\cdot\sqrt3=\sqrt3\ ft^2[/tex]
Calculate the area of the hexagon:
[tex]A=6A_\triangle\to A=6\cdot\sqrt3=6\sqrt3\ ft^2[/tex]
Method 2:
Use the formula of the area of an equilateral triangle:
[tex]A_\triangle=\dfrac{a^2\sqrt3}{4}\to A_\triangle=\dfrac{2^2\sqrt3}{4}=\sqrt3\ ft^2[/tex]
Calculate the area of the hexagon:
[tex]A=6A_\triangle\to A=6\cdot\sqrt3=6\sqrt3\ ft^2[/tex]
Method 3.
Use the trigonometric function to calculate the height of a triangle:
[tex]\sin60^o=\dfrac{h}{a}\\\\\sin60^o=\dfrac{\sqrt3}{2}\\\\\dfrac{h}{2}=\dfrac{\sqrt3}{2}\ \ \ |\cdot2\\\\h=\sqrt3\\\\\vdots[/tex]

