Respuesta :
To solve the inequality [tex] \frac{x^2+x+3}{2x^2+x-6}\ge \:0 [/tex]
[tex] \mathrm{Factor\:the\:left\:hand\:side\:}\frac{x^2+x+3}{2x^2+x-6}: [/tex]
The numerator [tex] x^2+x+3 [/tex] is not factorizable.
so factor the denominator [tex] 2x^2+x-6 [/tex]:
[tex] 2x^2+x-6=\left(2x^2-3x\right)+\left(4x-6\right)=x\left(2x-3\right)+2\left(2x-3\right)\\ \mathrm{Factor\:out\:}x\mathrm{\:from\:}2x^2-3x\mathrm{:\quad }x\left(2x-3\right)\\ \mathrm{Factor\:out\:}2\mathrm{\:from\:}4x-6\mathrm{:\quad }2\left(2x-3\right)\\ [/tex]
Now take [tex] \mathrm{Factor\:out\:common\:term\:}\left(2x-3\right) [/tex]
Then we get factor of the denominator as [tex] \left(2x-3\right)\left(x+2\right) [/tex]
Thus [tex] \frac{x^2+x+3}{2x^2+x-6}=\frac{x^2+x+3}{\left(x+2\right)\left(2x-3\right)} [/tex]
Now [tex] \mathrm{Compute\:the\:signs\:of\:the\:factors\:of\:}\frac{x^2+x+3}{\left(x+2\right)\left(2x-3\right)}
[/tex]
Signs of [tex] x^2+x+3>0 [/tex]
[tex] \mathrm{Choosing\:ranges\:that\:satisfy\:the\:required\:condition:}\:\ge \:\:0 [/tex]
[tex] x<-2\quad \mathrm{or}\quad \:x>\frac{3}{2} [/tex] is the required solution of the given inequality.

Answer: [tex](-\infty, -2)\cup(3/2,\infty)[/tex]
Step-by-step explanation:
Here, the given expression,
[tex]\frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0[/tex]
Since, for the value of x,
Denominator ≠ 0,
[tex]2x^2+x-6\neq 0[/tex]
[tex]\implies 2x^2+4x - 3x - 6\neq =0[/tex]
[tex]\implies 2x(x+2)-3(x+2)\neq 0[/tex]
[tex]\implies (2x-3)(x+2)\neq 0[/tex]
[tex]\text{ if }2x-3\neq 0\implies x\neq \frac{3}{2}[/tex]
[tex]\text{If } x+2\neq 0\implies x\neq -2[/tex]
Thus, there is three intervals possible,
1) [tex](-\infty,-2)[/tex]
2) [tex](-2,\frac{3}{2})[/tex]
3) [tex](\frac{3}{2},\infty)[/tex]
In first intervals, [tex]\frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0[/tex] is true.
⇒ [tex](-\infty,-2)[/tex] will contain the value of x.
In second interval, [tex]\frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0[/tex]
is not true,
⇒ [tex](-2, -\frac{3}{2})[/tex] will not contain the value of x,
In third interval,
In third interval, [tex]\frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0[/tex]
is true,
⇒ [tex](-2, -\frac{3}{2})[/tex] will contain the value of x,
In third interval,
Thus, the value of x is,
[tex](-\infty, -2)\cup(3/2,\infty)[/tex]
