Let [tex] P(A)=0.4 [/tex] and [tex] P(B)=0.6 [/tex]. The the probability both events occurring [tex] P(AB)=P(A)P(B|A)=P(B)P(A|B) [/tex].
This shows [tex] P(AB) \leq \min(P(A),P(B)) \\
P(AB) \leq \min(0.4,0.6)\\
P(AB) \leq 0.4 [/tex]
If A and B are independent
[tex] P(AB)=P(A)P(B)=0.4*0.6=0.24 [/tex]
Thus, the statement is (B) False.