Respuesta :

The balanced equation for the given titration reaction can be written as

[tex] 2 HNO_{3}(aq)+ Ca(OH)_{2}(aq)\rightarrow Ca(NO_{3})_{2}+ 2 H_{2}O [/tex]

Step 1 : Find moles of Ca(OH)₂

Volume of Ca(OH)₂ = 20 mL

Concentration of Ca(OH)₂ = 5.00 x 10⁻³ M

Moles of Ca(OH)₂ = [tex] 20 mL * \frac{1L}{1000 mL} * \frac{5.00*10^{-3}mol}{L} [/tex]

Moles of Ca(OH)₂ = 1.00 x 10⁻⁴

Step 2 : Find moles of HNO3 using mole ratio from balanced equation

The mole ratio of HNO₃ and Ca(OH)₂ is 2 : 1

Let us use this as a conversion factor to find moles of HNO₃.

Moles of HNO₃ = [tex] 1 * 10^{-4} mol (Ca(OH)_{2} ) * \frac{2mol(HNO_{3})}{1mol(Ca(OH)_{2})} [/tex]

Moles of HNO₃ = 2.00 x 10⁻⁴

Step 3 : Find concentration of HNO3

Concentration of HNO3 can be calculated as

[tex] [HNO_{3} ] = \frac{mol (HNO_{3})}{Volume (L)} [/tex]

The concentration of HNO₃ is given as 5.00 x 10⁻³

Moles of HNO3 = 2.00 x 10⁻⁴

Let us plug in these values in above equation.

[tex] 5 * 10^{-3} = \frac{2.00*10^{-4}}{Volume (L)} [/tex]

[tex] Volume = \frac{2.00*10^{-4}}{5*10^{-3}} [/tex]

[tex] Volume = 0.04L [/tex]

Volume of HNO₃ in mL = [tex] 0.04 L * \frac{1000 mL}{1L} = 40 mL [/tex]

Volume of HNO₃ needed for titration is 40 mL

[tex]\boxed{{\text{40 mL}}}[/tex]of [tex]5\times{10^{-3}}\;{\text{M}}[/tex] [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] is needed to titrate 20 mL of [tex]5\times{10^{-3}}\;{\text{M}}[/tex] [tex]{\text{Ca}}{\left({{\text{OH}}} \right)_{\text{2}}}[/tex] to the equivalence point.

Further Explanation:

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one liter of the solution. It is denoted by M and its unit is mol/L.

The formula to calculate the molarity of the solution is as follows:

[tex]{\text{Molarity of solution}}=\frac{{{\text{Amount}}\left({{\text{mol}}}\right){\text{of solute}}}}{{\;{\text{volume}}\left({\text{L}}\right)\;{\text{of solution}}}}[/tex]          ...... (1)

Rearrange equation (1) to calculate the amount of solute.

[tex]{\text{Amount of solute}}=\left({{\text{Molarity of solution}}}\right)\left({{\text{Volume}}\;{\text{of}}\;{\text{solution}}}\right)[/tex]       …… (2)

Firstly, the volume of   is to be converted into L. The conversion factor for this is,

[tex]{\text{1 mL}}={10^{-3}}\;{\text{L}}[/tex]

So the volume of [tex]{\text{Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}[/tex] is calculated as follows:

[tex]\begin{gathered}{\text{Volume of Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}=\left({{\text{20 mL}}}\right)\left({\frac{{{{10}^{-3}}\;{\text{L}}}}{{{\text{1}}\;{\text{mL}}}}}\right)\\={\text{2}}\times{\text{1}}{{\text{0}}^{-2}}{\text{ L}}\\\end{gathered}[/tex]

The molarity of [tex]{\text{Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}[/tex] the solution is [tex]5\times{10^{-3}}\;{\text{M}}[/tex].

The volume of [tex]{\text{Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}[/tex] the solution is [tex]{\text{2}}\times{\text{1}}{{\text{0}}^{-4}}{\text{ L}}[/tex].

Substitute these values in equation (2) to calculate the amount of [tex]{\text{Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}[/tex].

[tex]\begin{gathered}{\text{Amount of Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}=\left({{\text{5}}\times{\text{1}}{{\text{0}}^{-3}}\;{\text{M}}}\right)\left({{\text{2}}\times{\text{1}}{{\text{0}}^{-2}}\;{\text{L}}}\right)\\=1\times{10^{-4}}\;{\text{mol}}\\\end{gathered}[/tex]

The chemical equation for the reaction of nitric acid with calcium hydroxide is as follows:

[tex]{\text{Ca}}{\left({{\text{OH}}}\right)_2}+2{\text{HN}}{{\text{O}}_3}\to{\text{Ca}}{\left({{\text{N}}{{\text{O}}_{\text{3}}}}\right)_2}+{{\text{H}}_{\text{2}}}{\text{O}}[/tex]

According to the balanced chemical reaction, one mole of [tex]{\text{Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}[/tex] reacts with two moles of [tex]{\text{HN}}{{\text{O}}_3}[/tex] to form products.

So the amount of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex]is twice the amount of [tex]{\text{Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}[/tex]and calculated as follows:

[tex]{\text{Amount of HN}}{{\text{O}}_{\text{3}}}={\text{2}}\left({{\text{Amount of Ca}}{{\left({{\text{OH}}}\right)}_{\text{2}}}}\right)[/tex]              …… (3)

Substitute [tex]1\times{\text{1}}{{\text{0}}^{-4}}{\text{ mol}}[/tex] for the amount of [tex]{\text{Ca}}{\left({{\text{OH}}}\right)_{\text{2}}}[/tex] in equation (3).

[tex]\begin{gathered}{\text{Amount of HN}}{{\text{O}}_{\text{3}}}={\text{2}}\left({{\text{1}}\times{\text{1}}{{\text{0}}^{-4}}\;{\text{mol}}}\right)\\={\text{2}}\times{\text{1}}{{\text{0}}^{-4}}\;{\text{mol}}\\\end{gathered}[/tex]

Rearrange equation (1) to calculate the volume of the solution as follows:

[tex]{\text{Volume}}\;{\text{of}}\;{\text{solution}}=\frac{{{\text{Amount of solute}}}}{{{\text{Molarity of solution}}}}[/tex]            …… (4)

Substitute [tex]2\times{\text{1}}{{\text{0}}^{-4}}{\text{ mol}}[/tex] for the amount of solute and [tex]5\times{10^{-3}}\;{\text{M}}[/tex] for the molarity of solution in equation (4) to calculate the volume of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex].

[tex]\begin{gathered}{\text{Volume}}\;{\text{of}}\;{\text{HN}}{{\text{O}}_3}=\frac{{{\text{2}}\times{\text{1}}{{\text{0}}^{-4}}\;{\text{mol}}}}{{{\text{5}}\times{\text{1}}{{\text{0}}^{-3}}\;{\text{M}}}}\\={\text{0}}{\text{.04 L}}\\\end{gathered}[/tex]

The volume is to be converted into mL. The conversion factor for this is,

[tex]{\text{1 L}}={10^3}\;{\text{mL}}[/tex]

So the volume of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] can be calculated as follows:

[tex]\begin{gathered}{\text{Volume of HN}}{{\text{O}}_{\text{3}}}=\left({{\text{0}}{\text{.04 L}}}\right)\left({\frac{{{{10}^3}\;{\text{mL}}}}{{{\text{1 L}}}}}\right)\\={\text{40 mL}}\\\end{gathered}[/tex]

So the volume of [tex]{\mathbf{HN}}{{\mathbf{O}}_{\mathbf{3}}}[/tex] is 40 mL.

Learn more:

1. Determine the given mass of solute: https://brainly.com/question/2847466

2. Determine the moles of water produced: https://brainly.com/question/1405182

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Solutions

Keywords: KOH, molarity, 20 mL, 0.20 L, concentration, concentration terms, volume, moles, molar mass, 0.04 L, 40 mL.

RELAXING NOICE
Relax