Respuesta :

PROBLEM ONE

Solving for x in 2x + 5y > -1.

Step 1 ) Subtract 5y from both sides.

2x + 5y > -1

2x + 5y - 5y > -1 - 5y

2x > -1 - 5y

Step 2 ) Divide both sides by 2.

2x > -1 - 5y

[tex] \displaystyle\frac{2x}{2} > \displaystyle\frac{-1 - 5y}{2} [/tex]

[tex] \displaystyle\ x > \frac{-1 - 5y}{2} [/tex]

So, the solution for x in 2x + 5y > -1 is...

[tex] \displaystyle\ x > \frac{-1 - 5y}{2} [/tex]

Solving for y in 2x + 5y > -1.

Step 1 ) Subtract 2x from both sides.

2x + 5y > -1

2x - 2x + 5y > -1 - 2x

5y > -1 - 1x

Step 2 ) Divide both sides by 5.

5y > -1 - 1x

[tex] \displaystyle\frac{5x}{5} > \frac{-1 -1x}{5} [/tex]

[tex] \displaystyle\ x > \frac{-1 -1x}{5} [/tex]

So, the solution for y in 2x + 5y > -1 is...

[tex] \displaystyle\ x > \frac{-1 -1x}{5} [/tex]

PROBLEM TWO

Solving for x in 4x - 3 < -3.

Step 1 ) Subtract 3 from both sides.

4x - 3 < -3

4x -3 - 3 < -3 - 3

4x < 0

Step 2 ) Divide both sides by x.

4x < 0

[tex] \displaystyle\frac{4x}{4} <\frac{0}{4} [/tex]

x < 0

So, the solution for x in 4x - 3 < -3 is...

x < 0

- Marlon Nunez

RELAXING NOICE
Relax