PROBLEM ONE
•
Solving for x in 2x + 5y > -1.
•
Step 1 ) Subtract 5y from both sides.
2x + 5y > -1
2x + 5y - 5y > -1 - 5y
2x > -1 - 5y
Step 2 ) Divide both sides by 2.
2x > -1 - 5y
[tex] \displaystyle\frac{2x}{2} > \displaystyle\frac{-1 - 5y}{2} [/tex]
[tex] \displaystyle\ x > \frac{-1 - 5y}{2} [/tex]
So, the solution for x in 2x + 5y > -1 is...
[tex] \displaystyle\ x > \frac{-1 - 5y}{2} [/tex]
•
Solving for y in 2x + 5y > -1.
•
Step 1 ) Subtract 2x from both sides.
2x + 5y > -1
2x - 2x + 5y > -1 - 2x
5y > -1 - 1x
Step 2 ) Divide both sides by 5.
5y > -1 - 1x
[tex] \displaystyle\frac{5x}{5} > \frac{-1 -1x}{5} [/tex]
[tex] \displaystyle\ x > \frac{-1 -1x}{5} [/tex]
So, the solution for y in 2x + 5y > -1 is...
[tex] \displaystyle\ x > \frac{-1 -1x}{5} [/tex]
•
PROBLEM TWO
•
Solving for x in 4x - 3 < -3.
•
Step 1 ) Subtract 3 from both sides.
4x - 3 < -3
4x -3 - 3 < -3 - 3
4x < 0
Step 2 ) Divide both sides by x.
4x < 0
[tex] \displaystyle\frac{4x}{4} <\frac{0}{4} [/tex]
x < 0
So, the solution for x in 4x - 3 < -3 is...
x < 0
•
•
- Marlon Nunez