the answer would be [tex] \frac{2x\sqrt{y}}{3} [/tex]
hope this helps! :)
Answer:
[tex]\frac{2x\sqrt{y}}{3}[/tex]
Step-by-step explanation:
[tex]\sqrt[4]{\frac{16x^{11}y^8}{81x^7y^6}}[/tex]
LEts simplify the fraction inside the radical
we use rule of exponents to simplify the variables
[tex]\frac{a^m}{a^n} =a^{m-n}[/tex]
When the exponents are in division with same base then we subtract the exponents
[tex]\frac{x^{11}}{x^7} =x^{11-7}=x^4[/tex]
[tex]\frac{y^{8}}{y^6} =y^{8-6}=y^2[/tex]
[tex]\sqrt[4]{\frac{16x^{11}y^8}{81x^7y^6}}[/tex]
[tex]\sqrt[4]{16} =\sqrt[4]{2^4} =2[/tex]
[tex]\sqrt[4]{81} =\sqrt[4]{3^4} =3[/tex]
Equivalent expression is
[tex]\frac{2\sqrt[4]{x^4y^2}}{3}[/tex]
[tex]\frac{2x\sqrt[4]{y^2}}{3}[/tex]
[tex]\sqrt[4]{y^2} =y^\frac{2}{4} =y^\frac{1}{2}[/tex]
[tex]\frac{2x\sqrt{y}}{3}[/tex]