Respuesta :
[tex]\sf Hello![/tex]
• [tex]\sf Radius, \:r = 8\: in.[/tex]
[tex]\sf Circumference\: of\: the\: circle[/tex] = [tex]\sf 2[/tex]π[tex]\sf r = \sf 2\cdotπ\cdot \sf 8 = \sf 16[/tex]π [tex]\sf in.[/tex]
[tex]\sf with\: central\: angle\: of\: 2[/tex]π [tex]\sf radians[/tex]
[tex]\sf Then,[/tex]
• [tex]\sf Length\: of\: Arc[/tex] = [tex]\sf 4 \:in.[/tex]
[tex]\dfrac{\sf 4}{\sf 16π} × \sf 2π[/tex] = [tex]\dfrac{\sf 1}{\sf 2} \: \sf radian[/tex]
~ [tex]\sf iCarl [/tex]
• [tex]\sf Radius, \:r = 8\: in.[/tex]
[tex]\sf Circumference\: of\: the\: circle[/tex] = [tex]\sf 2[/tex]π[tex]\sf r = \sf 2\cdotπ\cdot \sf 8 = \sf 16[/tex]π [tex]\sf in.[/tex]
[tex]\sf with\: central\: angle\: of\: 2[/tex]π [tex]\sf radians[/tex]
[tex]\sf Then,[/tex]
• [tex]\sf Length\: of\: Arc[/tex] = [tex]\sf 4 \:in.[/tex]
[tex]\dfrac{\sf 4}{\sf 16π} × \sf 2π[/tex] = [tex]\dfrac{\sf 1}{\sf 2} \: \sf radian[/tex]
~ [tex]\sf iCarl [/tex]
Answer:
0.5
Step-by-step explanation:
this says one half but that is not an option choice and some people may not realize that 0.5 is the equivalent
