Respuesta :

1. First, you must change [tex] f(x) [/tex] for [tex] y [/tex]. Then, you need to switch [tex] x [/tex] and[tex] y [/tex] and solve for [tex] y [/tex], as following:

[tex] y=-\frac{1}{2}\sqrt{x+1} \\ x=\frac{1}{2}\sqrt{y+1}\\ x^{2} =(\frac{1}{2}\sqrt{y+1})^{2}\\ x^{2} =\frac{1}{4}(y+1)\\ y=4x^{2} -1 [/tex]

2. Therefore, you have:

[tex] f^{-1}(x)=4x^{2} -1 [/tex]

The answer is: [tex] f^{-1}(x)=4x^{2} -1 [/tex]

Answer


f⁻¹(x) = 4x² - 1


f⁻¹(x) ≥ 35


Explanation

The function to find the inverse for is;


f(x) = -1/2 × √(x-1), x ≥ -3


First equat the function to y the make x the subject of the formula.


y = -1/2 × √(x-1)


Square both sides of the equation

y² = 1/4 ×(x+1)


Multiplying both sides by 4


4y² = x+1

Subtracting 1 from both sides.


x = 4y² - 1


Now interchange x and y.


y = 4x² - 1


The inverse of f(x) = 1/2 × √(x-1) is;


f⁻¹(x) = 4x² - 1 , x ≥ -3


f⁻¹(x) = 4×(-3)² -1

= (4×9) - 1

=36 - 1

=35


Answer,

f⁻¹(x) ≥ 35



ACCESS MORE