We have the segment shown in the Figure below. The midpoint of the line segment joining the points [tex](x_{1},y_{1}) \ and \ (x_{2},y_{2})[/tex] is given by the Midpoint Formula:
[tex] Midpoint=M=(\frac{x_{1}+x_{2}}{2},\frac{x_{2}+y_{2}}{2}) [/tex]
where:
[tex] A=(x_{1},y_{1})=(9,8) \\ B=(x_{2},y_{2})=(-1,-2) [/tex]
Therefore, substituting these values in the midpoint formula we have:
[tex] M=(\frac{9-1}{2},\frac{8-2}{2})=\boxed{(4,3)} [/tex]
So the right answer is D.
We simply use the midpoint formula to find the average values of the respective coordinates of the two endpoints.