Respuesta :
This is the answer to this problem, I had it as well but i even tually figured it out.

Answer:
Tiles Boxes
[tex]3x-1-2(2^{x})[/tex] [tex]a(x)-2b(x)[/tex]
[tex]2^x\cdot (6x-2)[/tex] [tex]2a(x)\cdot b(x)[/tex]
[tex]\frac{2^x}{6x-2}[/tex] [tex]\frac{b(x)}{2a(x)}[/tex]
[tex]6x-2+2^x[/tex] [tex]2a(x)-b(x)[/tex]
[tex]6x-2+2^x[/tex] [tex]2a(x)+b(x)[/tex]
Step-by-step explanation:
The given function are
[tex]a(x)=3x-1[/tex]
[tex]b(x)=2^x[/tex]
1.
[tex]a(x)-b(2x)=3x-1-2^{2x}[/tex]
2.
[tex]2a(x)\cdot b(x)=2(3x-1)\cdot 2^x=2^x\cdot (6x-2)[/tex]
3.
[tex]a(x)-2b(x)=3x-1-2(2^{x})[/tex]
4.
[tex]\frac{b(x)}{2a(x)}=\frac{2^x}{2(3x-1)}=\frac{2^x}{6x-2}[/tex]
5.
[tex]2a(x)+b(x)=2(3x-1)+2^{x}=6x-2+2^x[/tex]
So, the required matching is
Tiles Boxes
[tex]3x-1-2(2^{x})[/tex] [tex]a(x)-2b(x)[/tex]
[tex]2^x\cdot (6x-2)[/tex] [tex]2a(x)\cdot b(x)[/tex]
[tex]\frac{2^x}{6x-2}[/tex] [tex]\frac{b(x)}{2a(x)}[/tex]
[tex]6x-2+2^x[/tex] [tex]2a(x)-b(x)[/tex]
[tex]6x-2+2^x[/tex] [tex]2a(x)+b(x)[/tex]