We can use trigonometric formulas to solve this question. Let's use cosine, since we can use the adjacent side and hypotenuse and solve for the hypotenuse:
We need to convert degrees to radians via the equation: [tex]1degree= \frac{ \pi }{180} [/tex]
So 20 degrees converted to radians is: [tex]20* \frac{ \pi }{180}= \frac{ \pi }{9}=0.349 [/tex]
So now we use the equation:
[tex]cos(0.349)= \frac{35}{y} [/tex]
[tex]y= \frac{35}{cos(0.349)} [/tex]
[tex]y=37.25[/tex]
So the length of the hypotenuse is 37.25.