We divide the figure into a triangle and a rectangle.
The formula of an area of a triangle:
[tex]A_t=\dfrac{ah}{2}[/tex]
We have:
[tex]a=5-1\dfrac{1}{3}=3\dfrac{2}{3}=\dfrac{11}{3}\ ft\\\\h=2\ ft[/tex]
substiutute:
[tex]A_t=\dfrac{\frac{11}{3}\cdot2}{2}=\dfrac{11}{3}\ ft^2[/tex]
The formula of an area of a rectangle:
[tex]A_r=wl[/tex]
We have:
[tex]w=5\ ft\\\\l=\dfrac{1}{3}\ ft[/tex]
substitute
[tex]A_r=5\cdot\dfrac{1}{3}=\dfrac{5}{3}\ ft^2[/tex]
The area of the figure:
[tex]A_F=A_t+A_r\\\\A_F=\dfrac{11}{3}+\dfrac{5}{3}=\dfrac{16}{3}=5\dfrac{1}{3}\ ft^2[/tex]