Respuesta :
using a graph tool
I proceed to graph each case
case a)
[tex] y=cos (\frac{1}{2} x) [/tex]
see the attached figure N 1
case b)
[tex] y=cos (\frac{1}{4} x) [/tex]
see the attached figure N 2
case c)
[tex] y=cos (4x) [/tex]
see the attached figure N 3
case d)
[tex] y=cos (2x) [/tex]
see the attached figure N 4
therefore
the answer is the option A
[tex] y=cos (\frac{1}{2} x) [/tex]
The period of the function [tex] y=\cos (kx) [/tex] is [tex] T=\dfrac{2\pi }{k} [/tex]. From the graph you can see that period of given function is [tex] 4\pi [/tex] (you can see that at x=0, y=1 and next time y=1 when x=4π ).
Then
[tex] 4\pi =\dfrac{2\pi}{k} ,\\ 4\pi k=2\pi,\\ k=\dfrac{2\pi }{4\pi } =\dfrac{1}{2} [/tex].
For [tex] k=\dfrac{1}{2} [/tex] the function [tex] y=\cos (kx) [/tex] becomes [tex] y=\cos (\dfrac{1}{2} x) [/tex].
Answer: correct choice is A.