Answer : In the reaction of NiO(s) ⇌ Ni(s) + [tex] \frac{1}{2} O_{2} _{(g)}[/tex]
We have the given data of Δ[tex]G^{0} [/tex] = 212 KJ/mol
Temperature is = 25+273 = 298 K
And gas constant R = 0.008314 KJ/mol
we can use the relatinoship of gibb's free energy and remainder quotient (Q).
ΔG = Δ[tex]G^{0} [/tex] +RTlnQ
at equilibrium Q = K where K is equilibrim constant, and ΔG = 0;
0 = Δ[tex]G^{0} [/tex] + RTlnK
lnK = Δ[tex]G^{0} [/tex] / (RT)
ln K = 212 / (0.00831 X 298) = 85.6
therefore K = [tex] e^{85.6} [/tex] = 1.51 X[tex] 10^{37} [/tex]
Now, K = [tex](PO_{2}) ^{\frac{1}{2}} [/tex]
So, 1.51 X[tex] 10^{37} [/tex] = [tex](PO_{2}) ^{\frac{1}{2}} [/tex]
So, the pressure of oxygen will be = 3.87 X [tex] 10^{18} [/tex] Pa
On converting, Pa to atm it will be 3.756 X [tex] 10^{13} [/tex] atm