Maku1
contestada

Line JK passes through points J(–3, 11) and K(1, –3). What is the equation of line JK in standard form?

Respuesta :

Hello!

First of all we find the slope by dividing the difference of the y values by the difference of the x values as seen below.

[tex] \frac{-3-11}{1+3} = -\frac{14}{4} = \frac{7}{2} [/tex]

The slope of our line is 7/2, or 3.5
-------------------------------------------------------------
Now we will put the slope and a point on our line into slope intercept form and solve for b. We will use (-3,11).

11=3.5(-3)+b
11=10.5+b
b=0.5

Our final equation is shown below.

y=3.5x+0.5

I hope this helps!


Line JK: (y₂-y₁/x₂-x₁)
      [(-3)-11] / [1-(-3)] = -14/4 == -7/2
Point slope formula: y-y₁=m(x-x₁)
     y-(11)=-7/2[x-(-3)]
y-11= -7/2x-21/2                                                 -7/2*3= -21/2   
     Add 11 to both sides.

  y= -7/2x+1/2...