Respuesta :
tan x = sin x / cos x
cot x = cos x/ sin x
We can see that tan and cot are reciprocal.
So, if tan(O) = -(3)/(8), then cot(O) = - (8)/3.
cot x = cos x/ sin x
We can see that tan and cot are reciprocal.
So, if tan(O) = -(3)/(8), then cot(O) = - (8)/3.
Answer:
Hence, the answer is:
[tex]\cot O=\dfrac{1}{\dfrac{-3}{8}}[/tex] or [tex]\cot 0=\dfrac{-8}{3}[/tex]
Step-by-step explanation:
We know that the tangent trignometric function and the cotangent trignometric function is given by:
[tex]\tan x=\dfrac{1}{\cot x}[/tex]
i.e. the tangent function and the cotangent function are inverse of each other.
We are given tangent of an angle O as:
[tex]\tan 0=\dfrac{-3}{8}[/tex]
Hence, we have:
[tex]\cot O=\dfrac{1}{\tan O}\\\\i.e.\\\\\cot O=\dfrac{1}{\dfrac{-3}{8}}\\\\i.e.\\\\\cot O=\dfrac{8}{-3}\\\\i.e.\\\\\cot 0=\dfrac{-8}{3}[/tex]