Respuesta :

tan x = sin x / cos x

cot x = cos x/ sin x

We can see that tan and cot are reciprocal.

So, if tan(O)  = -(3)/(8), then cot(O) = - (8)/3.

Answer:

Hence, the answer is:

      [tex]\cot O=\dfrac{1}{\dfrac{-3}{8}}[/tex] or  [tex]\cot 0=\dfrac{-8}{3}[/tex]

Step-by-step explanation:

We know that the tangent trignometric function and the cotangent trignometric function is given by:

         [tex]\tan x=\dfrac{1}{\cot x}[/tex]

i.e. the tangent function and the cotangent function are inverse of each other.

We are given tangent of an angle O as:

[tex]\tan 0=\dfrac{-3}{8}[/tex]

Hence, we have:

[tex]\cot O=\dfrac{1}{\tan O}\\\\i.e.\\\\\cot O=\dfrac{1}{\dfrac{-3}{8}}\\\\i.e.\\\\\cot O=\dfrac{8}{-3}\\\\i.e.\\\\\cot 0=\dfrac{-8}{3}[/tex]