The area of a hexagon depending on its side is given by:
[tex]A= \frac{3L^2}{2tan(30)} [/tex]
Rewriting we have:
[tex]A= \frac{3L^2}{2 \frac{1}{\sqrt{3}}}[/tex]
[tex]A = \frac{3\sqrt{3}L^2}{2} [/tex]
Substituting values we have:
[tex]A = \frac{3\sqrt{3}(8)^2}{2} [/tex]
Rewriting the expression we have:
[tex]A = \frac{3\sqrt{3}(64)}{2}[/tex]
[tex]A = \frac{192\sqrt{3}}{2}[/tex]
[tex]A = 96\sqrt{3}[/tex]
Answer:
the area of a regular hexagon given the side length is 8 in is:
[tex]A = 96\sqrt{3}[/tex]