Respuesta :

The answer is C.
Here's why, nPr = n!/(n-r)!. Plug in 7 for n and 3 for r. And you get 7!/(7-3)!.
Thus, 7!/4! = (7*6*5*4*3*2*1)/(4*3*2*1), which simplifies to 7*6*5 = 210

Answer  

Option (c) is correct

The value of  [tex]^7P_3=210[/tex]

Step-by-step explanation:

 Given : [tex]^7P_3[/tex]

We have to find the value of  [tex]^7P_3[/tex]

Consider [tex]^7P_3[/tex]

Permutation is defined as number of possibilities for choosing an ordered set  of r objects from a total of n objects.

[tex]^nP_r=\frac{n!}{\left(n-r\right)!}[/tex]

put n = 7 and r = 3

We have,

[tex]^7P_3=\frac{7!}{\left(7-3\right)!}[/tex]

Simplify, we have

[tex]=\frac{7!}{4!}[/tex]

[tex]\quad \frac{n!}{\left(n-m\right)!}=n\cdot \left(n-1\right)\cdots \left(n-m+1\right),\:n>m[/tex]

[tex]\frac{7!}{4!}=7\cdot \:6\cdot \:5=210[/tex]

Thus, The value of  [tex]^7P_3=210[/tex]