Respuesta :
The answer is C.
Here's why, nPr = n!/(n-r)!. Plug in 7 for n and 3 for r. And you get 7!/(7-3)!.
Thus, 7!/4! = (7*6*5*4*3*2*1)/(4*3*2*1), which simplifies to 7*6*5 = 210
Here's why, nPr = n!/(n-r)!. Plug in 7 for n and 3 for r. And you get 7!/(7-3)!.
Thus, 7!/4! = (7*6*5*4*3*2*1)/(4*3*2*1), which simplifies to 7*6*5 = 210
Answer
Option (c) is correct
The value of [tex]^7P_3=210[/tex]
Step-by-step explanation:
Given : [tex]^7P_3[/tex]
We have to find the value of [tex]^7P_3[/tex]
Consider [tex]^7P_3[/tex]
Permutation is defined as number of possibilities for choosing an ordered set of r objects from a total of n objects.
[tex]^nP_r=\frac{n!}{\left(n-r\right)!}[/tex]
put n = 7 and r = 3
We have,
[tex]^7P_3=\frac{7!}{\left(7-3\right)!}[/tex]
Simplify, we have
[tex]=\frac{7!}{4!}[/tex]
[tex]\quad \frac{n!}{\left(n-m\right)!}=n\cdot \left(n-1\right)\cdots \left(n-m+1\right),\:n>m[/tex]
[tex]\frac{7!}{4!}=7\cdot \:6\cdot \:5=210[/tex]
Thus, The value of [tex]^7P_3=210[/tex]