Respuesta :

First we'll require the derivative (slope) function.

f'(x) = 6x + 1

Next evaluate the derivative function @ x = -2

f'(-2) = 6(-2) + 1
f'(-2) = -11

Thus the slope of the tangent line @ x = -2  is  m = -11

Now we can use either  y = mx + b  or  y - y1 = m(x - x1)  to find the tangent equation.

y - 4 = -11(x - (-2))
y - 4 = -11(x + 2)
y - 4 = -11x - 22
     y = -11x - 22 + 4

Thus

y = -11x - 18  or  11x + y + 18 = 0  is the equation of the required tangent.

Answer:

C) [tex]y=-8x-12[/tex]

Step-by-step explanation:

If you graph each line, option C is the only one that is tangent to [tex]f(x)=3x^2+4x[/tex]

Ver imagen abortmission
RELAXING NOICE
Relax