ANSWER
3∛(4)
EXPLANATION
108 prime factorizes into 2^2 * 3^3
[tex] \sqrt[3]{108} = \sqrt[3]{2^2 \cdot 3^3}[/tex]
Apply radical property [tex]\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}[/tex]
[tex]\begin{aligned}
\sqrt[3]{108} &= \sqrt[3]{2^2} \cdot \sqrt[3]{ 3^3} \\
&= \sqrt[3]{2^2} \cdot 3 \\
&= 3 \sqrt[3]{4}
\end{aligned}[/tex]