Respuesta :

Length of E F

a² + b² = c²
a² + 7² = 13²
a² + 49 = 169
a² = 169 - 49
a² = 120
a  = √120

Answer = √120

Answer:

(B) [tex]EF=\sqrt{120}[/tex]

Step-by-step explanation:

Given: From the figure, it is given that in triangle DEF, DE=13 and DF=7

To find: The value of EF.

Solution: It is given that From the figure, it is given that in triangle DEF, DE=13 and DF=7, therefore using Pythagoras theorem, we have

[tex](DE)^2=(DF)^2+(EF)^2[/tex]

Substituting the given values, we get

[tex](13)^2=(7)^2+(EF)^2[/tex]

[tex]169=49+(EF)^2[/tex]

[tex]169-49=(EF)^2[/tex]

[tex]120=(EF)^2[/tex]

[tex]EF=\sqrt{120}[/tex]

Thus, the value of EF is [tex]=\sqrt{120}[/tex].

Hence, option B is correct.

RELAXING NOICE
Relax