Respuesta :
Answer:
The change in beam's length due to the thermal expansion is 0.00288 meters.
Explanation:
Given that,
Original length of the steel rod, l = 15 m
Initial temperature, [tex]T_i=34^{\circ} C[/tex]
Final temperature, [tex]T_f=50^{\circ} C[/tex]
The coefficient of linear expansion of the steel, [tex]\alpha =12\times 10^{-6}\ /^{\circ} C[/tex]
Let [tex]\Delta l[/tex] is the change in beam's length due to the thermal expansion. It can be given by :
[tex]\dfrac{\Delta l}{l}=\alpha (T_f-T_i)\\\\\Delta l=l\alpha (T_f-T_i)\\\\\Delta l=15\times 12\times 10^{-6}\times (50-34)\\\\\Delta l=0.00288\ m[/tex]
So, the change in beam's length due to the thermal expansion is 0.00288 meters. Hence, this is the required solution.
