Respuesta :
Answer with explanation:
The given function is:
[tex]f(x)=\frac{4}{x}[/tex]
→Domain and Range of the function is ,all real number excluding 0, which can be written as, x ∈ R→{0} and y∈ R→{0}.
So, if we replace , f(x) by, y ,the equation of function will become
x y = 4,which is rectangular Hyperbola.
→Horizontal Asymptote
[tex]y=\lim_{x \to \infty} \frac{4}{x}=0[/tex]
→Vertical Asymptote
[tex]x=\lim_{y \to \infty}\frac{4}{y}=0[/tex]

Answer:
The graph of given function is shown below.
Step-by-step explanation:
The given function is
[tex]f(x)=\frac{4}{x}[/tex]
We need top find the graph of given rational function.
First find the key features of the given function.
1. Vertical asymptote: Equate denominator equal to 0.
[tex]x=0[/tex]
The vertical asymptote is x=0.
2. Horizontal asymptote: Find the [tex]y=lim_{x\rightarrow \infty}f(x)[/tex] to find the horizontal asymptote.
[tex]y=lim_{x\rightarrow \infty}f(x)=lim_{x\rightarrow \infty}\frac{4}{x}[/tex]
[tex]y=\frac{4}{ \infty}[/tex]
[tex]y=0[/tex]
The horizontal asymptote is y=0.
3. The graph has vertical asymptote is x=0 and horizontal asymptote is y=0, therefore the graph has no x- and y-intercepts.
4. End behavior:
[tex]f(x)\rightarrow 0\text{ as }x\rightarrow -\infty[/tex]
[tex]f(x)\rightarrow -\infty\text{ as }x\rightarrow 0^-[/tex]
[tex]f(x)\rightarrow \infty\text{ as }x\rightarrow 0^+[/tex]
[tex]f(x)\rightarrow =\text{ as }x\rightarrow \infty[/tex]
5. Table of value:
The table of values is
x f(x)
-2 -2
-1 -4
1 4
2 2
Plot these ordered pairs on a coordinate and connect these points by free hand curve using the key features.
