Respuesta :
△FMN ≅ △HQR
so
MF ≅ QH
MN ≅ QR
NF ≅ RH
and
∠F ≅ ∠H
∠M ≅ ∠Q
∠N ≅ ∠R
Answer
MN ≅ QR
∠M ≅ ∠Q
QH ≅ MF
so
MF ≅ QH
MN ≅ QR
NF ≅ RH
and
∠F ≅ ∠H
∠M ≅ ∠Q
∠N ≅ ∠R
Answer
MN ≅ QR
∠M ≅ ∠Q
QH ≅ MF
Answer: [tex]\overline{MN}\cong\overline{QR}[/tex]
[tex]\angle{M}\cong\angle{Q}[/tex]
[tex]\overline{MF}\cong\overline{QH}[/tex]
Step-by-step explanation:
We know that if two triangles are congruent , then the corresponding angles and sides are congruent by CPCTC.
Given: [tex]\triangle {FMN}\cong\triangle{HQR}[/tex]
Therefore , the corresponding angles and sides of [tex]\triangle {FMN}\text{ and }\triangle{HQR}[/tex] are congruent.
∠F corresponds ∠H
∠M corresponds ∠Q
∠N corresponds ∠R
⇒ ∠F ≅ ∠H
∠M ≅ ∠Q
∠N ≅ ∠R
[tex]\overline{MF}\cong\overline{QH}\\\overline{MN}\cong\overline{QR}\\\overlien{FN}\cong\overline{HR}[/tex]
So , from the given options, the true congruency statements are :-
[tex]\overline{MN}\cong\overline{QR}[/tex]
[tex]\angle{M}\cong\angle{Q}[/tex]
[tex]\overline{MF}\cong\overline{QH}[/tex]