Suppose △FMN≅△HQR . Which congruency statements are true? Select each correct answer. NF¯¯¯¯¯¯≅HQ¯¯¯¯¯¯ MN¯¯¯¯¯¯¯≅QR¯¯¯¯¯ ∠M≅∠Q ∠R≅∠F ∠N≅∠M QH¯¯¯¯¯¯≅MF¯¯¯¯¯¯

Respuesta :

△FMN ≅ △HQR
so
MF 
  QH
MN 
 QR
NF  
 RH
and
∠F ≅ ∠H 
∠M ≅ ∠Q
∠N ≅ ∠R

Answer
MN ≅ QR
∠M ≅ ∠Q
QH ≅ MF

Answer: [tex]\overline{MN}\cong\overline{QR}[/tex]

[tex]\angle{M}\cong\angle{Q}[/tex]

[tex]\overline{MF}\cong\overline{QH}[/tex]

Step-by-step explanation:

We know that if two triangles are congruent , then the corresponding angles and sides are congruent by CPCTC.

Given: [tex]\triangle {FMN}\cong\triangle{HQR}[/tex]

Therefore , the corresponding angles and sides of [tex]\triangle {FMN}\text{ and }\triangle{HQR}[/tex] are congruent.

∠F corresponds ∠H

∠M corresponds ∠Q

∠N corresponds ∠R

⇒ ∠F ≅ ∠H

∠M ≅ ∠Q

∠N ≅ ∠R

[tex]\overline{MF}\cong\overline{QH}\\\overline{MN}\cong\overline{QR}\\\overlien{FN}\cong\overline{HR}[/tex]

So , from the given options, the true congruency statements are :-

[tex]\overline{MN}\cong\overline{QR}[/tex]

[tex]\angle{M}\cong\angle{Q}[/tex]

[tex]\overline{MF}\cong\overline{QH}[/tex]

ACCESS MORE