Respuesta :

  (x2+100)  •  (x2-5) so this would be the optimal answer 

Answer:

[tex]x=+10i,-10i,\sqrt{5} ,-\sqrt{5}[/tex]

Step-by-step explanation:

[tex]x^4 + 95x^2 -500 = 0[/tex]

REwrite the equation in the form of quadratic equation ax^2+bx+c=0

To solve for x , we replace x^2 by 'u'

[tex]u^2 + 95u -500 = 0[/tex]

Now we factor the left hand side

Product is -500 and sum is 95

100 times -5 is -500

100 + (-5) is 95, factors are 100 and -5

[tex]u^2 + 95u -500 = 0[/tex]

[tex](u+100)(u-5) = 0[/tex]

Replace u with x^2

[tex](x^2+100)(x^2-5) = 0[/tex]

Set each factor =0 and solve for x

[tex]x^2+100= 0, x^2=-100[/tex]

[tex]x^2-5= 0, x^2=5[/tex]

To remove square , take square root on both sides

square root (-1) is 'i'

[tex]x^2=-100, x= +-10i[/tex]

[tex]x^2=5, x=+-\sqrt{5}[/tex]

ACCESS MORE